
White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
1/15

Endianness
or

Where is Byte 0?

White Paper

Bertrand Blanc – 3B Consultancy – bertrand.blanc@3B-Consultancy.com

Bob Maaraoui – Texas Instruments – bmaa@ti.com

Endianness Keywords: endianness, little-endian, big-endian, endian-neutral, byte 0 location,

Least Significant Byte, Most Significant Byte, communication, endian conversions.

Enhanced Endianness Keywords: enhanced endianness, endianness, little-endian, big-endian,

middle-endian, endian-neutral, byte 0 location, Least Significant Element/Unit, Most

Significant Element/Unit, data width, data atomic element/unit width, least addressable

element/unit, byte-swap, bit-swap, communication, endian conversions.

Preliminaries 2

Assumptions 3

Sub-Width 5

Endianness 6

Byte Swap 7

Bit Swap 8

Integration of Heterogeneous Components 9

Exchanged Data Study 13

Little-Endian towards Big-Endian ...13

Big-Endian towards Little-Endian ...13

Little-Endian towards Little-Endian ..13

Big-Endian towards Big-Endian..13
Summary 15

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
2/15

Preliminaries

This document aims to present how Endianness is willing to be taken into consideration to let Endian specific

system inter-operate sharing data without misinterpret value.

Intel introduces their white paper with the following sentence:

“Endianness describes how multi-byte data is represented by a computer system and is dictated by the CPU

architecture of the system. Unfortunately not all computer systems are designed with the same Endian-

architecture. The difference in Endian-architecture is an issue when software or data is shared between

computer systems. An analysis of the computer system and its interfaces will determine the requirements of the

Endian implementation of the software. ”

This paper targets CPU-based Endianness raising software issues. We will try to reinterpret these information at

register/system-level. Indeed, a system is composed of components seen at system-level as black-boxes defined

elsewhere (legacy component, reused component, purchased component, …). All these components were

defined with a basic Endian mode which may differ once integrated together. We can easily understand that a

data send in little-endian format will be interpreted in a wrong way once caught by a module big-Endian-based.

Intel gives the following definition:

“Endianness is the format to how multi-byte data is stored in computer memory. It describes the location of the

most significant byte (MSB) and least significant byte (LSB) of an address in memory. Endianness is dictated by

the CPU architecture implementation of the system. The operating system does not dictate the endian model

implemented, but rather the endian model of the CPU architecture dictates how the operating system is

implemented.

Representing these two storage formats are two types of Endianness-architecture, Big-Endian and Little-Endian.

There are benefits to both of these endian architectures. Big-Endian stores the MSB at the lowest memory

address. Little-Endian stores the LSB at the lowest memory address. The lowest memory address of multi-byte

data is considered the starting address of the data.”

This definition seems fine, but a few assumptions are to be established to fit register/system-level Endianness.

We will present in a first part what these assumptions are, followed with major Endian formats met: big-endian

and little-endian.

We will hence address consequences of Endianness, enriched with bit-order and byte-swap. New features will be

introduced beyond basic Endianness, leading to a model of Enhanced Endianness.

Note to the Reader: This study is part of a set of studies, some background is hence missing to accurately

understand all aspects of this document, especially unified component foundations. Nevertheless, beyond some

obfuscated terms coming from the background, this document targets Enhanced Endianness and should be self-

containing to address this topic by itself.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
3/15

Assumptions

We presented in a previous document that a system, whatever it may be (infinite hierarchal systems or raw-

register leaves), is defined as

(Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, Zn)

with Sn a set of switch control-signal

 Rm an ordered set of m Read-access lines triggered by Sn

 Wm’ an ordered set of m’ Write-access lines triggered by Sn

 Im’ an ordered set of m’ input data bus lines triggered by Sn associated to each Wm’ lines

 RSTr a set of reset control-signals (power-on-resets, software resets, …) preempting regular behaviors

 V an inner retained sized data

 B a set of behaviors triggered by Sn, Rm, Wm’, RSTr control-signals, Im’ and V data values as well

 O output data bus

 M a set of inner sub-components triggered by Sn

 T a memory allocation table triggered by Sn, sorting M allocated components

 Zn an ordered set of component size triggered by Sn

Note 1: a raw-register (final system leaf) is seen as above, with assumptions: M = {}, and T = {}.

Note 2: a system is seen as above, with assumptions: B = {} (inferred: M ≠ {}, and T ≠ {})

Sn may compute data coming from outside the current pertained component. Im’, V, O are storing or carrying

data. Zn fix component size. These data have not been considered up to now since we especially targeted control-

oriented signals giving up any data meaning. However, interpretation of these data is mandatory to correctly

compute trigger signals, or broadcasting data with a known format in order to enable other modules to correctly

interpret these data.

Example 1: according to data representation, 0xAB and 0xBA may represent the same data.

Example 2: according to data representation, algorithms may be more efficient or not. An addition should

compute least significant bit first in order to broadcast carry if needed, whilst a < operation should

compute most significant bit first in order to minimize computations.

Example 3: despite a component is defined and designed to fit a given sub-width, modules outside may

themselves be designed with another sub-width creating incoherencies within Endianness

understandings between these modules.

System definition above is therefore enriched with following data representation features:

1. sub-width ZSn defines in a given mode, what is basic physical register width this system is made of,

targeting physical memory mapping into a given memory

2. Endianness En defines in a given mode, how data are handled within a given sub-width atomic data

item

3. bit-order bSn defines in a given mode, which bit is significant first, within a sub-width atomic data

item

4. byte-order BSn defines in a given mode, which byte is significant first, within a sub-width atomic

data item

Note 1: In a given mode, we notice that data are represented with unique sub-width, unique Endianness

representation, unique bit-order and unique byte-order.

A container will be called packet likewise, composed of ZS bytes. We should hence say which byte is the first

one within containers. In the same way we should say which bit is the first one within bytes.

Endianness targets containers order within a Z-width data, stating which container is the first one located at the

lowest address.

Byte-swap targets bytes order within a ZS-width container, stating which byte is the first one located at the

lowest address.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
4/15

Bit-swap targets bits order within a byte, stating which bit is the first one.

Ordering convention will be as depicted below, tagged as a 32-bit data, composed of ZS-width containers, in

little-endian mode, without any byte-swap, without any bit-swap: 32/ZS/little/no-byte-swap/no-bit-swap. This

representation is the underlying standard one.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
5/15

Sub-Width

Synonyms: Atomic Element size/width, Least Addressable Unit (LAU)

We can ask ourselves whether these 4 features are necessary, whether only handling Endianness is not enough.

First of all, despite byte is the smaller addressable memory item, some memories may not be byte-based in their

addressable memory address computation system. The may be 16-bit, 32-bit, … memory addressable. Sub-width

information is hence mandatory to get how memory addresses are incremented.

According to physical memory address system, a 32-bit register may be seen as:

In first layout 32-bit sub-width-based, the 32-bit register is represented in an atomic memory space at address

0x0, next register may be located at address 0x1. In second layout 16-bit sub-width based, the 32-bit register is

represented in 2 separate contiguous memory space at addresses 0x0 and 0x1, next register will be at address

0x2. In 3
rd

 layout 8-bit sub-width-based, the 32-bit register is represented in separate contiguous 4 atomic

address spaces at addresses 0x0, 0x1, 0x2 and 0x3, next register may be located at address 0x4. We can notice

that 3
rd

 data representation is the smaller one, since based on byte-based representation.

Example: we assume the same 32-bit register is represented with 32-bit sub-width in mode M32, with 16-bit sub-

width in mode M16, and with 8-bit sub-width in standard mode:

• Sn = {std, M32, M16}

• Zn = {std → 32-bit, M32 → 32-bit, M16 → 4-byte} = {32-bit}

• ZSn = {std → 1-byte, M32 → 4-byte, M16 → 16-bit}

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
6/15

Endianness

Thru sub-width feature we can sort atomic sub-widths items within a given register. Commonly admitted

definition of Endianness is

1. in Big-Endian, Most-Significant-Byte (MSB) is stored at lowest address

2. in Little-Endian, Least-Significant-Byte (LSB) is stored at lowest address

This couple of definition byte-based describes a given static 8-bit sub-width. However, we noticed that sub-

width may be 8-bit-based, but may be 16-bit-based, … This definition hence becomes inaccurate. Nevertheless,

for historical reasons, we will still employ MSB and LSB words, keeping in mind “B” standing for “byte” must

be seen as “sub-width”.

Example 1: The picture below shows how data are ordered for a 32-bit register, in both little-endian and big-

endian representation layout, for 32-bit, 16-bit and 8-bit sub-widths. Byte order within containers, and bit order

within bytes is not significant.

Note: These translations are called “butterfly”.

Example 2: We assume the same 32-bit register is represented with 32-bit sub-width in mode M32, with 16-bit

sub-width in mode M16, and with 8-bit sub-width in standard mode. The component is defined in standard mode

with little-endian layout, and in big-endian in M32 and M16.

This system is defined as:

• Sn = {std, M32, M16}

• Zn = {std → 32-bit, M32 → 32-bit, M16 → 4-byte} = {32-bit}

• ZSn = {std → 1-byte, M32 → 4-byte, M16 → 16-bit}

• En = {std → little, M32 → big, M16 → big} = {std → little, (M32, M16 → big)}

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
7/15

Byte Swap

This feature gives an order on bytes within a same atomic sub-with item to denote which byte is the most/least

significant. This feature fits more MSL/LSB definitions given in Endianness section. Byte-swap is sometimes

called middle-endian.

Example 1: The picture below shows how data are ordered for a 32-bit register, in little-endian format, handling

both swapped and not-swapped byte order, for 32-bit, 16-bit and 8-bit sub-widths.

Example 2: We assume the same 32-bit register is represented with 32-bit sub-width in mode M32, with 16-bit

sub-width in mode M16, and with 8-bit sub-width in standard mode. The component is defined in standard mode

with little-endian layout, and in big-endian in M32 and M16. Byte-swap is only consistent in M16 mode.

This system is defined as:

• Sn = {std, M32, M16}

• Zn = {std → 32-bit, M32 → 32-bit, M16 → 4-byte} = {32-bit}

• ZSn = {std → 1-byte, M32 → 4-byte, M16 → 16-bit}

• En = {std → little, M32 → big, M16 → big} = {std → little, (M32, M16 → big)}

• BSn = {std → not-swapped, M32 → not-swapped, M16 → swapped}

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
8/15

Bit Swap

This feature denotes which bit is the most/least significant within a byte. Indeed, address 0x0 can start with bit0,

or bit7 of the same byte.

Example 1: The picture below shows how data are ordered for a 32-bit register, in little-endian format, bytes are

not swapped, handling both swapped and not-swapped bit order, for 32-bit, 16-bit and 8-bit sub-widths.

Example 2: We assume the same 32-bit register is represented with 32-bit sub-width in mode M32, with 16-bit

sub-width in mode M16, and with 8-bit sub-width in standard mode. The component is defined in standard mode

with little-endian layout, and in big-endian in M32 and M16. Byte-swap is only consistent in M16 mode. Bit-

swap only targets M32 mode.

This system is defined as:

• Sn = {std, M32, M16}

• Zn = {std → 32-bit, M32 → 32-bit, M16 → 4-byte} = {32-bit}

• ZSn = {std → 1-byte, M32 → 4-byte, M16 → 16-bit}

• En = {std → little, M32 → big, M16 → big} = {std → little, (M32, M16 → big)}

• BSn = {std → not-swapped, M32 → not-swapped, M16 → swapped}

• bSn = {std → not-swapped, M32 → swapped, M16 → not-swapped}

Note: To ease and shorten component size representation (size, sub-width, Endianness, byte-swap, bit-swap)

contained in separate sets of features (Zn, ZSn, En, BSn, bSn) triggered by modes in Sn, we will note:

Sn → Zn/ZSn/En/BSn/bSn

Besides, little-endian and big-endian are shortened into l and b; swapped and not-swapped are shortened into S

and nS.

Example:

• M32 → 32-bit/4-byte/b/nS/S

• M16 → 4-byte/16-bit/b/S/nS

• std → 32-bit/1-byte/l/nS/nS

Note: most of registers are captured with standard view: 32-bit/8-bit/l/nS/nS.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
9/15

Integration of Heterogeneous Components

We saw each component is designed setting up a common context (Sn → Zn/ZSn/En/BSn/bSn) in the scope of

each of them. We will present in this section how to handle data coherency between each of them once

integrated.

Be a system C = (Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, Zn/ZSn/En/BSn/bSn), M = {Mi}k.

As it is defined (including default settings) for each sub-components from M, Zn/ZSn/En/BSn/bSn features are set

up for C as well.

These data-layout features are visible at C boundary hiding encapsulated ones mapped in C.T from C.M. The

context set up at C level must hence be reestablished between C.M allocated components to ensure data

coherency.

Example 1: M1 is 32-bit/32-bit/l/nS/nS, M2 is 32-bit/8-bit/b/nS/nS. M1 and M2 communicate sharing data: M1

sends data 0xABCD, M2 hence receives data 0xABCD and translate it into 0xDCBA before computing it.

Fixing data format features at C-level will inform outside this module (seen as a black-box) how data are

managed within it (white-box), and hence how to keep data meaning between heterogeneous components.

Example 2: A 4-KB component D is designed as 32-bit/16-bit/l/nS/nS by a 3
rd

 vendor. This system is integrated

within a 32-bit/8-bit/X/Y/Z environment wrapped by component C. We propose to wrap this legacy component

to propose four separate memory spaces fitting each possibility based on an 8-bit sub-width (feature coming

from C):

1. little-endian, bits not swapped

2. little-endian, bits swapped

3. big-endian, bits not swapped

4. big-endian, bits swapped

These wrappers will hence be declared as:

1. 32-bit/8-bit/l/nS/nS = 32-bit/16-bit/l/nS/nS = 32-bit/32-bit/l/nS/nS

2. 32-bit/8-bit/l/nS/S = 32-bit/16-bit/l/nS/S = 32-bit/32-bit/l/nS/S

3. 32-bit/8-bit/b/nS/nS = 32-bit/16-bit/b/S/nS = 32-bit/32-bit/l/S/nS

4. 32-bit/8-bit/b/nS/S = 32-bit/16-bit/b/S/S = 32-bit/32-bit/l/S/S

Note 1: byte-order is close to Endianness handling, especially when sub-widths are different supposed to keep

coherency between exchanged data.

Note 2: bit-order is fully decoupled in the model having no interaction with Endianness management.

C is hence designed as shown below. C will be seen from outside as a full 32-bit/8-bit/l/nS/nS component, but will

offer the opportunity to have data available in each various layout according to which memory space is targeted.

1. C = (Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, {32-bit/8-bit/X/X/X})

2. M = {M1, M2, M3, M4}

3. M1 = (S1n, R1m, W1m’, I1m’, RST1r, V1, B1, O1, M1, T1, {32-bit/8-bit/l/nS/nS}), M1 = {D}

4. M2 = (S2n, R2m, W2m’, I2m’, RST2r, V2, B2, O2, M2, T2, {32-bit/8-bit/l/nS/S}), M2 = {D}

5. M3 = (S3n, R3m, W3m’, I3m’, RST3r, V3, B3, O3, M3, T3, {32-bit/8-bit/b/nS/nS}), M3 = {D}

6. M4 = (S4n, R4m, W4m’, I4m’, RST4r, V4, B4, O4, M4, T4, {32-bit/8-bit/b/nS/S}), M4 = {D}

7. T = {0x0 ← M1, 4-KB ← M2, 8-KB ← M3, 12-KB ← M4}

Note 1: We notice C features for Endianness, byte-swap and bit-swap are left blank thru ‘X’. This means

component C is designed Endianness-free relegating Endianness handling to sub-components level. Module C can

be seen at its boundary as 32-bit/8-bit/l/nS/nS, 32-bit/8-bit/l/nS/S, 32-bit/8-bit/b/nS/nS and 32-bit/8-bit/b/nS/S.

Note 2: in previous documents 4-KB in 6
th

 item would have been written “f(4-KB)”. Function f can be removed

now since it was supposed to wrap (Sn → Zn/ZSn/En/BSn/bSn) topic, which has just been sorted out.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
10/15

From note 1 we may propose a methodological rule using features provided by this model: Endianness features of

an Endianness-free module are constrained by switches computing Command Bus data Cmd (used to select the

address matching T allocated addresses).

1. C = (Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, Zn/ZSn/En/BSn/bSn)

2. Sn = Sn’ U {S1 ← Cmd ≥ 0x0 and Cmd < 4-KB,

S2 ← Cmd ≥ 4-KB and Cmd < 8-KB,

S3 ← Cmd ≥ 8-KB and Cmd < 12-KB,

S2 ← Cmd ≥ 12-KB}

3. M = {M1, M2, M3, M4}

4. Zn/ZSn/En/BSn/bSn = {S1 → 32-bit/8-bit/l/nS/nS,

S2 → 32-bit/8-bit/l/nS/S,

S3 → 32-bit/8-bit/b/nS/nS,

S4 → 32-bit/8-bit/b/nS/S}

5. M1 = (S1n, R1m, W1m’, I1m’, RST1r, V1, B1, O1, M1, T1, {32-bit/8-bit/l/nS/nS}), M1 = {D}

6. M2 = (S2n, R2m, W2m’, I2m’, RST2r, V2, B2, O2, M2, T2, {32-bit/8-bit/l/nS/S}), M2 = {D}

7. M3 = (S3n, R3m, W3m’, I3m’, RST3r, V3, B3, O3, M3, T3, {32-bit/8-bit/b/nS/nS}), M3 = {D}

8. M4 = (S4n, R4m, W4m’, I4m’, RST4r, V4, B4, O4, M4, T4, {32-bit/8-bit/b/nS/S}), M4 = {D}

9. T = {0x0 ← M1, 4-KB ← M2, 8-KB ← M3, 12-KB ← M4}

Note 1: we can infer a coherency property targeting Endianness features, between signal enabling conditions and

focused sub-components in such modes.

Note 2: we notice that M set do not trigger inner sub-modules since they are living at the mean time within the

component. This is full allowed since there is no overlapping between each allocated components.

Example 3: Consider following system expected to perform a 32-bit addition. Some components are used to build

this system over existing components, each of them are evolving with different endian contexts. The table after,

describes how 32-bit raw data, op1 = op2 = 0x0A0B0C0D represented in standard representation, are evolving

throughout this system to produce awaited right result 0x1416181A (standard representation).

Column “E” highlights which endian-conversion was requested: little-to-big, big-to-little or big-to-big. We notice

that big-to-big endian conversions may happen, targeting data with different sub-width containers: in this case a

byte-swap within containers is performed (column “BS”). Little-to-little endian conversion only request data

repackaging without modifying byte order.

id E BS data description
Data layout within targeted component
1st row orders containers, 0 is affected to least significant (LS) container

0 1
op1 yes no 0x0A0B0C0D Raw 1

st
 operand data

0x0C0D 0x0A0B

0 1
op2 yes no 0x0A0B0C0D Raw 2

nd
 operand data

0x0C0D 0x0A0B

0 1
A yes no 0x0C0D_0A0B

1
st
 operand transmitted to 1

st

splitter 0x0A0B 0x0C0D

0 1 2 3
B yes yes 0x0D0C_0B0A

2
nd

 operand transmitted to 2
nd

splitter 0xA 0xB 0xC 0xD

0 1
C no yes 0x0D0C

1
st
 operand LS16-bit sent to 1

st

16-b add 0x0C 0x0D

D yes no 0x0A_0B 2
nd

 operand MS16-bit sent to 2
nd

0

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
11/15

16-b add 0x0B0A

0 1
E no no 0x0D_0C

2
nd

 operand LS16-bit sent to 1
st

16-b add 0x0C 0x0D

0
F no no 0x0A0B

1
st
 operand MS16-bit sent to 2

nd

16-b add 0x0A0B

0 1 2 3
G yes no 0x1A_18 computed LS16-bit

0x1A 0x18 0x00 0x00

0 1 2 3
H no no 0x1416 computed MS16-bit

0x16 0x14 0x00 0x00

i - - 0b0 1-bit carry -

0 1 2 3
R no no 0x14_16_18_1A result

0x1A 0x18 0x16 0x14

Assuming now a component Reader is plugged after the component Merger providing a way to access R data in

various formats. We consider 0x1416181A is carried out by R. The table below shows how R is transformed

according to variations on (X, Y, Rx, E) to output O. First Rx operation is performed, returning first x bits from bit

0, after having performed E-endianness switch, if needed, on (X, Y).

(X, Y), X in bits, Y is either little-endian (l) or big-endian (b)
Rx E

(8, l) (8, b) (16, l) (16, b) (32, l) (32, b)

R 8-bit little 0x1A 0x1A 0x1A 0x18 0x1A 0x14

R 16-bit little 0x181A 0x181A 0x181A 0x1A18 0x181A 0x1614

R 32-bit little 0x1416181A 0x1416181A 0x1416181A 0x16141A18 0x1416181A 0x1A181614

R 8-bit big 0x14 0x14 0x16 0x14 0x1A 0x14

R 16-bit big 0x1614 0x1614 0x1416 0x1614 0x181A 0x1614

R 32-bit big 0x1A181614 0x1A181614 0x181A1416 0x1A181614 0x1416181A 0x1A181614

We notice that according to X, outputted data O can bring 3 different values (see colors): bytes layouts are

different.

We add now a byte-swap input BS as shown in the picture below, computing the following table. Bytes are

swapped within X ranges, when an endian conversion is required (cells in bold within the table).

(X, Y), X in bits, Y is either little-endian (l) or big-endian (b)
Rx E

(8, l) (8, b) (16, l) (16, b) (32, l) (32, b)

R 8-bit little 0x1A 0x1A 0x1A 0x1A 0x1A 0x1A

R 16-bit little 0x181A 0x181A 0x181A 0x181A 0x181A 0x181A

R 32-bit little 0x1416181A 0x1416181A 0x1416181A 0x1416181A 0x1416181A 0x1416181A

R 8-bit big 0x14 0x14 0x14 0x14 0x14 0x14

R 16-bit big 0x1614 0x1614 0x1611 0x1614 0x1614 0x1614

R 32-bit big 0x1A181614 0x1A181614 0x1A181614 0x1A181614 0x1A181614 0x1A181614

We notice that byte-swap within a sub-width range when an endian conversion is required align outputs regardless

of its inner data layout representation. Conversion table can hence be reduced into:

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
12/15

Rx E (X, Y), X in bits, Y is either little-endian (l) or big-endian (b)

R 8-bit little 0x1A

R 16-bit little 0x181A

R 32-bit little 0x1416181A

R 8-bit big 0x14

R 16-bit big 0x1614

R 32-bit big 0x1A181614

More generally, byte can be swapped within a sub-width range whenever needed, independently of any endianness

consideration, nor any endian needed conversion. We used this byte-swap feature above to compute outputted data

removing data storage layout within “Reader” component to avoid any misinterpretation leading to drastic side-

effects in the interpretation of the read data.

Each time byte-swap BS is enabled, we can speak about middle-endian, however this confusing term does not

mention whether basic component Endianness context was either little-endian, or big-endian, leading to

misinterpretation of data as well.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
13/15

Exchanged Data Study

We will study here communications between a couple of 32-bit components A and B, where sub-widths (X and

X’’) and endianness (Y and Y’’) may vary independently within both. Communication channel may be as complex

as we want, and hence will be tweaked with different sub-width (X’) and endianness likewise (Y’).

X’, Y’
V

(X, Y) = (8-bit, little)
V’

V’’
(X’’, Y’’) = (8-bit, little)

8-bit, little 0x14_16_18_1A 0x14_16_18_1A 0x14_16_18_1A

16-bit, little 0x14_16_18_1A 0x1416_181A 0x14_16_18_1A

32-bit, little 0x14_16_18_1A 0x1416181A 0x14_16_18_1A

8-bit, big 0x14_16_18_1A 0x1A_18_16_14 0x14_16_18_1A

16-bit, big 0x14_16_18_1A 0x181A_1416 0x14_16_18_1A

32-bit, big 0x14_16_18_1A 0x1416181A 0x14_16_18_1A

Comment: The channel is aware of A features and is hence able to compute data provided by A in functions of A

and its endianness features. According to its sub-width, the channel will thereafter pack data. In a similar way, B

can act in the same way getting data from the channel.

Note 1: We can notice for (X’, Y’) = (16-bit, big) that little-endian data V are packed in 16-bit packets and then

swapped (endian-conversion). Data contained within these packets are not swapped, despite they were in an 8-bit

sub-width layout representation (X’ = 8-bit).

Note 2: we notice that an endian-conversion is a reflexive operation: (X, Y) = (X’’, Y’’) implies V = V’’, whatever

communication channel may be.

Little-Endian towards Big-Endian

Case: Z/ZS/l to Z’/ZS’/b

1. Incoming little-endian data are resized: either packed (ZS < ZS’), split (ZS > ZS’) or unchanged (ZS = ZS’)

2. Endian conversion (l to b) is applied on data gathered in [1]

Big-Endian towards Little-Endian

Case: Z/ZS/b to Z’/ZS’/l

1. Endian conversion (b to l) is applied on incoming big-endian data, swapping ZS sub-width packets

2. Data computed in [1] are resized: either packed (ZS < ZS’), split (ZS > ZS’) or unchanged (ZS = ZS’)

Little-Endian towards Little-Endian

Case: Z/ZS/l to Z’/ZS’/l

1. Incoming little-endian data are resized: either packed (ZS < ZS’), split (ZS > ZS’) or unchanged (ZS = ZS’)

2.

Big-Endian towards Big-Endian

Case: Z/ZS/b to Z’/ZS’/b

1. ZS = ZS’ : incoming big-endian data are unchanged

2. ZS < ZS’ : incoming big-endian data are packed and modified

a. ZS-width packets are gathered into ZS’-width bigger packets

b. ZS-width packets within ZS’-width packets are swapped

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
14/15

3. ZS > ZS’ : incoming big-endian data are modified and unpacked

a. Each ZS’-width packet is split into ZS-width packets

b. ZS-width packets are swapped within ZS’-packets

c. All ZS’-width packets are unpacked

Follow a few words about byte-swap operation BSn in Zn/ZSn/En/BSn/bSn. Endian conversions can be achieved

according to algorithms presented above when a couple of components are communicating full aware of

endianness of the other. In this way either the master or the slave can compute data in the right way.

Moreover, components can be designed in an Endian-free, or Endian-neutral, way, without any Endian information

(little or big) provided by the component. Endian-free way is a strong forte for bi-endian components, avoiding to

set up a common context, or avoiding to mess up usage of the component letting integrators mixing up what is

what. Endian-free systems propose multiple Endian-tagged interfaces enabling integrator to plug components on

the right interface natively fitting plugged components Endianness features.

To complete this goal, we saw that bytes may be swapped or not within sub-width packets according to data sub-

width callees. Provided interfaces might hence be:

1. Zn/ZSn/ln/nSn/bSn ZSn sub-width is kept as it for little-endian (no swapped operation is done)

2. Zn/ZSn/bn/nSn/bSn ZSn sub-width is kept as it for big-endian (no swapped operation is done)

3. Zn/ZSn/En/Sn/bSn ZSn sub-width is fictitiously kept since swap operation is done

Note 1: First couple of cases is defined with algorithms presented above

Note 2: 3
rd

 case is more ambiguous as it since keeping data coherency using this feature depends of both

Endianness and sub-widths. To avoid any issue, we suggest to set up ZS to 8-bit, which is the unit targeted by byte-

swap feature. Callers will hence have to resize these 8-bit based data according to their own sub-width.

Note 3: This note is a consequence of the note above. We may remove byte-swap feature providing every interface

for various ZS. However this remark is not really consistent since we cannot foresee future usage of designed

system especially for unforeseen ZS (64-bit, 128-bit, …).

Note 4: bit-swap bS does not influence Endianness-based features, but will be relevant as soon as we ask “where is

first bit within a byte”.

White Paper: Endianness or Where is Byte 0? December 2005

Bertrand Blanc – Bob Maaraoui 3BC © 2005
15/15

Summary

We enriched system model (Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, Zn) with information targeting data layout.

Enhanced definition is:

(Sn, Rm, Wm’, Im’, RSTr, V, B, O, M, T, Zn/ZSn/En/BSn/bSn)

With

Zn an ordered set of component size triggered by Sn

ZSn an ordered set of component sub-width triggered by Sn

En an ordered set of component Endianness triggered by Sn. It can be either little-endian (l) or big-

endian (b), or Endian-free (X). Endianness is based on ZSn

BSn an ordered set of component byte-swap triggered by Sn, allowing full Endianness handling

between components exchanged data, not covered by local Endianness handled thru sub-width

settings. It can be either byte-swapped (S), or not byte-swapped (nS) or byte-swapp-free (X)

bSn an ordered set of component bit-swap triggered by Sn stating which bit is the first one within

an atomic sub-width or byte item. It can be either bit-swapped (S), or not bit-swapped (nS) or

bit-swapp-free (X)

An Endian-free context (based on En/BSn/bSn features) relies on sub-components Endian context. Once

computed a component cannot stay in a full Endian-free context. This means, either from each sub-component

Endian features a common Endian sub-set can be inferred at module-level, or component Endian features are left

blank under the assumption sub-components have their own exclusive Endian features compatibles.

Endianness features, covered by (Sn → Zn/ZSn/En/BSn/bSn), allow compositional architecture of heterogeneous

systems designed within their context or Endian-scope, without loosing information about

• data layout which may vary according to switches or built-in chosen technology

• address arithmetic which may vary according to switches or built-in chosen technology

• bi-Endian components (like ARM), and more generally about Endian-free components

An addition (+) will be designed with a little-endian approach, whilst a logics less (<) will be more efficiently

designed with a big-endian approach.

